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Wave-front control for extreme adaptive optics

Lisa A. Poyneer and Bruce Macintosh

Lawrence Livermore National Lab, Livermore, CA, USA

ABSTRACT

Current plans for Extreme Adaptive Optics systems place challenging requirements on wave-front control. This
paper focuses on control system dynamics, wave-front sensing and wave-front correction device characteristics. It
may be necessary to run an ExAO system after a slower, low-order AO system. Running two independent systems
can result in very good temporal performance, provided specific design constraints are followed. The spatially-
filtered wave-front sensor, which prevents aliasing and improves PSF sensitivity, is summarized. Different models
of continuous and segmented deformable mirrors are studied. In a noise-free case, a piston-tip-tilt segmented
MEMS device can achieve nearly equivalent performance to a continuous-sheet DM in compensating for a static
phase aberration with use of spatial filtering.

Keywords: adaptive optics, wave-front sensing, wave-front control

1. INTRODUCTION

Extreme Adaptive Optics (ExAO) requires new precision in wave-front control methods and pushes the techno-
logical limits of current hardware. The term ExAO encompasses systems that have large numbers of actuators
and high control rates. This is necessary to achieve Strehl ratios near one and to enable high-contrast imaging.
In this paper we will address three major issues for ExAO wave-front control. The first is due to technological
limitations on current MEMS phase corrector stroke. Insufficient stroke may require that an ExAO system
run after a low-order AO system which removes a substantial percentage of the wave-front phase aberration.
We examine the case of two control loops running independently on the same phase aberration. This analysis
shows that given adequate characterization of the low-order AO system, the ExAO system will successfully run
afterwards. Modal removal or inter-system communication is not necessary.

A second concern for ExAO is how well the phase can be corrected given a specific deformable mirror (DM)
or MEMS mirror. To address this question the influence function model for DM performance is assumed and a
variety of continuous and segmented surface mirrors are analyzed in comparison to the ideal. Segmented MEMS
introduce high-spatial-frequency content into the phase aberration. This content can be detrimental or even
performance-limiting. Filtering the phase to mask this power (and prevent aliasing) makes the best segmented
model perform almost as well in closed loop as the continuous DMs.

The prevention of aliasing is the third important ExAO topic discussed in this paper. Because the ExAO
system will sample the phase during measurement, aliasing will occur in the general case. This can be prevented
with use of a spatial filter before the wave-front sensor. We summarize the key results of the detailed Fourier-
optics analysis of the spatially-filtered WFS (SFWFS). Results show that in closed-loop, noise-free AO operation
on either reasonable atmospheric turbulence or segmented primary mirror phase errors, the use of the SFWFS
reduces phase power by 50 to 100 times due to the prevention of aliasing.

2. TEMPORAL CONTROL IN CLOSED LOOP

The DM or MEMS mirror which is used to correct atmospheric turbulence must have adequate stroke (the
physical distance the mirror surface can move.) A total stroke of 4 microns is necessary for correction of
reasonable turbulence (with tip-tilt removed) on an 8-meter aperture.1 This condition is met by the traditional
DM technologies used in regular AO systems on large telescopes. However, currently available MEMS devices
have only 2 microns stroke.2 It is possible that the 1000- to 4000-actuator class MEMS devices necessary for
ExAO may not have sufficient stroke to correct atmospheric turbulence.
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Figure 1. Block diagram for two AO control systems. The first AO system is noted by G1(s), and it produces error
residual e1(t). The addition of ExAO system G2(s) after it is a simple cascade, producing error residual e2(t).

One option to get around the stroke limitation would be to use multiple DMs. Another solution is to run the
ExAO system after a low-order AO system that is already installed on the telescope. This first AO system will
remove a significant percentage of the low-spatial-frequency power, where the most stroke is necessary. This is
analogous to the operation of separate tip-tilt and high-order correction loops with a tip-tilt mirror and a DM.
However, in the ExAO case, it is reasonable to assume the the ExAO system will have no communication with
the low-order AO running in front of it.

With two independent control systems correcting at the same time, care must be taken to ensure that no
undesirable interactions or instabilities occur. This is less a concern for the ExAO system, which will ‘see’
everything that the low-order AO system is doing. The low-order system will be operating at a slower rate and
will be unaware of any corrections to the phase downstream. The impact of running two AO systems at once
needs to be carefully studied before system design. We have carried out such a study using a comprehensive
discrete-time feedback control model for both systems. Below we present the fundamentals of the control system
analysis and analyze how the two systems will perform as a whole.

2.1. AO control system model

For the purposes of this study we will consider the control of a single variable to illustrate temporal effects.
We will not attempt to analyze the control of the entire phase in the pupil. For a detailed analysis of control
system theory, see a standard text such as Control Systems Engineering.3 A basic feedback control system can be
modeled as illustrated in Fig. 1. The input phase aberration φ(t), which changes with time, is corrected by the
shape of the DM d(t). The commands applied to the DM are determined in feedback through the system G(s),
which encompasses the entire control system. The system is driven not by the actual input φ(t) but by the error
e(t) that remains after correction by the DM. The system seeks to drive the error to zero. The error response
of the system E(jω) is the transfer from the input phase to the residual error. This is simply 1/(1 + G(jω)). In
our case this shows how much of the input phase aberration remains in the residual after correction with AO.

The AO system represented by G(s) is actually quite complex. It is a discrete-time control system with
a wave-front sensor and DM that ‘sample and hold’ to interface with continuous-time phase process. Work
elsewhere has established the transfer functions for such a control system (see Madec4 for a clear summary),
and we will simply state the final results. Using the Laplace and Z-transforms, the discrete and continuous are
coupled and the Laplace transform of the AO system G(s) is

G(s) = Exp[−τs]
(

1− Exp[−sT ]
sT

)2

C(z = Exp[sT ]), (1)

where τ is the compute delay, T is the time of the sample and hold of the WFS and DM and C(z) is the
Z-transform of the discrete controller. At this point, because we wish to examine different types of discrete
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Figure 2. [Left panel]: Error response of a 1-pole AO system running at 200 Hz. The correctible bandwidth is 12.2 Hz.
[Right panel]: The same slow system as other panel combined with a 2 kHz ExAO system. The combined AO system
error response is the sum of the two individual curves.

controllers, we will analyze the system as is. Because G(s) is complex-valued, we can separate it into magnitude
and phase. Evaluating on the jω axis to get the frequency response, we obtain for the magnitude of G(jw),

|G(jω)| = 4 sin2 (0.5Tω)
T 2ω2

|C(z = Exp[jωT ])|. (2)

The phase of the frequency response is

6 G(jω) = −τω − Tω + 6 C(z = Exp[jωT ]). (3)

The magnitude and phase of error response of the entire system can be expressed in terms of just |G(jω)| and
6 G(jω).

Consider now a simple one-pole control system. This system at each step scales the current phase estimate
by the constant k (usually 0.2-0.5) and adds it to the control command at the previous time step, scaled by
weight a (usually very close to 1.0). This produces the Z-transform

C(z) =
k

1− az−1
. (4)

Combined with the above results, this produces an error response magnitude of

|E(jω)| =
[
1 + |G(jω)|2 + 2|G(jω)| cos 6 G(jω)

]−1/2
, (5)

where the magnitude of G is now

|G(jω)| = 4 sin2(0.5Tω)
T 2ω2

k

(1 + a2 − 2a cos ωT )1/2
, (6)

and the phase is

6 G(jω) = −τω − Tω − tan−1

(
a sinωT

1− a cos ωT

)
. (7)

These functions can be evaluated numerically. The magnitude of the error response of the AO system for
200 Hz 1-pole control is shown in Fig. 2, left panel. This plot shows how the various temporal frequencies in
the time-varying phase aberration φ(t) get through to the residual error. The system suppresses (or is capable
of controlling) temporal frequencies where the magnitude of the transfer function is less than 0 dB. This defines
the bandwidth of the system. In this case the system is running at 200 Hz but the bandwidth is 12.2 Hz. Past
this frequency the phase is amplified.
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Figure 3. The interaction between the 400 Hz 2-pole system and the 2 kHz 1-pole ExAO system is unfavorable. The
peak in the slow system’s response around 30 Hz is more than the ExAO system’s attenuation, which drastically reduces
the overall bandwidth.

2.2. Combining two systems

Just as one system can be modelled, the two AO systems of concern (the low-order system in front and the
ExAO system) can be analyzed together. In block diagram format the two systems simply cascade. This setup is
shown in Fig 1. The input to the ExAO system is just the error residual of the first system. The error response
from the phase input φ(t) to the residual after the ExAO system is simply the product of the two error responses

E(jω) = E1(jω)E2(jω) = (1 + G1(jω))−1(1 + G2(jω))−1 (8)

The planned control rate of the ExAO system is 2 kHz and we assume 1-pole control. Shown in Fig. 2, right panel,
are the individual and combined error responses. The increase in rate simply shifts the error response farther
along the frequency axis. On the log-log plot the product E1E2 is just an addition of the curves. The ExAO
system has a bandwidth of 122 Hz and the combined system has a bandwidth of 124 Hz. Below the bandwidth
of the slow system (12.2 Hz) the combined AO system corrects much better than either one individually. Above
this bandwidth, the combined system still attenuates the phase error, but not as well as the ExAO system alone.
This is because the slow system amplifies phase error just past its bandwidth. Above the ExAO bandwidth (122
Hz) the combined system has essentially the same response as the ExAO system.

There is a tradeoff in performance between the combined system and just the ExAO system. Ignoring the
stroke limitation issue, the benefit of using two systems is that low-temporal frequency errors are suppressed
much better. Mid-range errors (between the slow bandwidth and the fast bandwidth) are corrected less well
in the dual system. Whether this tradeoff is a good one depends upon the temporal spectrum of the phase
aberration. If most of the phase power is at low temporal frequencies (which it is in the atmospheric turbulence
case) the improvement in the lower band will outweigh any loss of performance in the middle band.

Care must be taken when combining the slow and fast AO systems. The above case is actually a very good
scenario. A different scenario might be a slow system running at 400 Hz with 2-pole control instead of 1-pole.
2-pole control has a Z-transform of

C(z) =
k

(1− z−1)(1− az−1)
(9)

This scenario is shown in Fig. 3 In this case the 2-pole control gives more low-frequency attentuation to the slow
system. However, it also leads to more amplification past the system bandwidth of 24 Hz. This amplification is
actually greater than the ExAO attenuation for some frequencies, reducing the combined system bandwidth to
just 44 Hz. Increased temporal bandwidth, which is one of the main benefits of running at a very high rate is
compromized. This problem could be ameliorated by slowing down the slow system to less than 200 Hz. It is also



worth analyzing whether or not the peak of the slow system corresponds to sources of error, such as vibratory
modes of the telescope, which might occur in the 10-40 Hz range, so as not to amplify them.

This analysis also provides insight into the question of modal removal. Should the ExAO system correct only
high-order modes and leave the low-order modes to the slow system? Assuming the the variable φ(t) represents
the coefficient to a mode of the phase aberration, the analysis of this section shows that two systems together will
usually correct that mode better than just the slow system. This is because the added system runs at a faster
rate. The converse situation is also not necessary, i.e. removing modes from the slow system. These low-order
modes will require a lot of stroke, and may not be fully correctible by just the ExAO system. Secondly, unless
these modes have temporal power spectra such that the power is concentrated between the low bandwidth and
the high bandwidth, the combined system will be better than just the fast ExAO. Modal removal from either
system is not recommended by this analysis.

In conclusion, running a fast ExAO system after a slower, low-order AO system is viable. Correction in the
low frequencies will be much better than a single system alone. Care must be taken to analyze the temporal
response of the low-order system and to ensure that there is adequate separation between the two control rates.

3. THE SPATIALLY-FILTERED WAVE-FRONT SENSOR

The in-depth analysis of the spatially-filtered wave-front sensor5 (SFWFS) will not be repeated here. Instead,
the key results and properties for ExAO wave-front control will be summarized.

In the general case, AO systems operate using sampled measurements of the phase, or derivative of the phase.1

For ExAO we anticipate using the Shack-Hartmann sensor, which samples the phase gradient every subaperture
width d in the pupil plane. The reconstructed phase aberration is then applied as a correction, with use of
wave-front correction devices that have discrete actuators. Because the phase is not bandlimited in the general
case, aliasing will occur. Aliasing is a phenomenon associated with sampling that causes high-frequency signals
to be measured as low frequency signals. If the wave-front is sampled spatially with period d in both x- and
y-directions in the pupil plane, the phase must have no spatial frequency content above 1/2d for exact sampling
and reconstruction to occur. This condition will in the general case not be met.

Aliasing will degrade the performance of an ExAO system. In particular, it is detrimental in the astronomical
high-contrast imaging case, i.e. the search for faint objects close to bright stars. As discussed elsewhere,5, 6

at high Strehl ratios when diffraction has been controlled, the point-spread function (PSF) outside the core
approaches the power spectral density (PSD) of the phase, though not exactly. With perfect knowledge of the
phase, a deformable mirror should be able to sharply attenuate the components of the phase that correspond
to spatial frequencies up to 1/2d, removing scattered light at radii less than λ/2d and producing a PSF with a
square dark region. Removing the aliased power can result in vastly greater sensitivity to companions.

The spatial filter is implemented as a hard-edged field stop in a focal plane before the WFS. The stop is
λ/d wide (arcsec). Light scattered by spatial-frequency components above 1/2d frequency will be beyond this
field stop. It will be rejected, leading to suppression of up to 106 in phase power. Low-spatial frequency phase
errors will, however, not be contained entirely within the field stop, leading to bleeding of phase power. The
better the corrected phase residual is at low-spatial-frequencies, the better the performance of the SFWFS at
high-spatial frequency rejection. This makes the SFWFS ideal for the ExAO case where very high Strehl ratios
will be achieved.

Performance of the SFWFS was analyzed with our end-to-end ExAO system using Fourier optics. We used
static errors with no noise in closed-loop operation to isolate SFWFS performance. Two aberrations were chosen:
20 cm r0 atmospheric turbulence and the phase errors due to a segmented primary mirror (see the reference5 for
details of the model.) The base-line design is based on a proposed high-order AO system for direct imaging of
extra-solar planets.7 In this case we chose the upper end of the number of subapertures, with D/d = 62 across
a 10-m mirror. The nominal WFS is a Shack-Hartmann wave-front sensor with 4 × 4 pixels per subaperture,
which was simulated with Fourier optics and with centroiding for slope estimation. The WFS uses 800 nm light.
The phase estimation was done with the Fourier transform reconstructor.8 After loop convergence the residual
error was analyzed via PSD estimation. PSFs were generated at 1.6 microns with use of a Blackman apodization
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Figure 4. Apodized PSFs with and without the SFWFS in closed-loop operation on [left panel] 20 cm r0 atmospheric
turbulence and [right panel] segmented primary mirror errors. Use of the SFWFS gives a 50 to 100 times reduction in
PSF intensity within a large region, getting to 7 orders of magnitude less than the intensity of the PSF peak.

of the pupil. These PSFs (see Fig. 4) show that the SFWFS can lower PSF intensity by 50 to 100 times across
a broad range from the central core of the PSF. This is the dark area mentioned above.

A second major benefit of the SFWFS is that is can prevent phase errors at high spatial frequencies that
are introduced by the DM itself. As the following section explores, non-ideal DMs introduce power beyond the
spatial frequency cutoff 1/2d. If not adequately suppressed, aliasing of this extra phase power can inhibit stable
performance in closed loop with segmented DMs.

4. DEFORMABLE MIRROR MODELS AND EFFECTS ON PERFORMANCE

The ability of the AO system to correct the phase aberration depends in part on the response of the DM. The
DM can be a monolithic continuous glass facesheet mirror, or a continuous- or segmented-surface MEMS device.
To study the behavior of various DMs, we used the linear superposition model for the actuator response. In this
model the response of the DM is a linear superposition of the influence functions of each actuator, which are
assumed to be spatially invariant with actuator location. This makes the influence function the impulse response
of the DM and the Fourier transform of the influence function its frequency response, which is a non-ideal low-
pass filter. In the case of continuous facesheet DMs, this is a reasonable, but not highly accurate, model.9 For
segmented MEMS devices this is a much better model, because the segments are physically decoupled.

Theoretical predictions of DM performance were based on the frequency responses of the DMs. Given an
actuator spacing of d on the DM, the ideal frequency response is a perfect low-pass filter with cutoff frequency
of 1/2d. This would be a sinc-interpolating DM, which does not exist in practice. All other DMs are non-ideal,
and we examine how their performance differs from the ideal. There are two significant manifestations of using
a non-ideal DM. First, the DM can attenuate spatial-frequencies in its correctable pass-band. This leads to a
lower gain in the system for those frequencies. In open loop, this means that correction of those frequencies will
be only partial. In closed loop this is ameliorated somewhat, though the gain will increase the steady-state error
of the system in correcting that spatial frequency.

Second, a non-ideal DM introduces high-spatial frequency errors which alias into the sensed phase when that
phase is sampled. This phenomenon is more troubling than attenuation, particularly in the segmented DM case.
Aliasing of the phase can increase residual error in the passband and can even lead to instability in the system.
Aliasing can be mitigated with use of a spatial filter, which was described above.

Here we analyze the performance of several DM models. They are divided into two types: continuous and
segmented DMs. The Fried-geomtery is used, where the average phase gradient is measured in each subaperture
in a square lenslet array. The phase is then reconstructed and values are determined for the phase points at



the corners of the subapertures. For the continuous DMs, these phase points correspond to physical actuator
locations. For the segmented DMs, the phase points may or may not correspond to the actual location of the
DM actuators for the segments. For reference throughout we will compare performance to the ideal low-pass
filter. Its impulse response and transfer function are

hI(x, y) =
sin(πx/d)
(πx/d)

sin(πy/d)
(πy/d)

, (10)

HI(fx, fy) =
{

d2 |fx| < (2d)−1, |fy| < (2d)−1

0 else . (11)

4.1. Continuous surface DMs

For continuous DMs, we used the following influence functions. The first is the difference of two bivariate,
uncorrelated gaussians. This function is a reasonable approximation, but has the flaw of being radially symmetric
on a square grid of actuators. For the difference of two Gaussians, the general formulas are

hG(x, y) =
(
Exp

[
−a(x2 + y2)

]
− k × Exp

[
−b(x2 + y2)

])
(1− k)−1, (12)

HG(fx, fy) =

(
π

a
Exp

[
−π2(f2

x + f2
y )

a

]
− k

π

b
Exp

[
−π2(f2

x + f2
y )

b

])
(1− k)−1. (13)

In our case with subaperture spacing d, the constants in the above equations were chosen to be a = 2.51952/d2,
b = 0.652a and k = 0.241801. These constants set the influence function to be 0 at the closest neighboring
actuators and capture the undershoot curvature of the surface between the first and second neighbors.

The second influence function is the ideal sinc multiplied by a gaussian. For the sinc-gaussian model, the
influence function and response are

hS(x, y) = Exp
[
−c(x2 + y2)

] sin(πx/d)
(πx/d)

sin(πy/d)
(πy/d)

, (14)

HS(fx, fy) =

{
π

c
Exp

[
−π2(f2

x + f2
y )

c

]}
∗
{

d2 |fx| < (2d)−1, |fy| < (2d)−1

0 else (15)

In this case c = 1/4d2. The convolution integral can be evaluated numerically with the error function E(x),
which is the cumulative density function of the unit-normal random variable, such that

HS(fx, fy) = d2

[
E

(
fx + (2d)−1√

c/(2π2)

)
− E

(
fx − (2d)−1√

c/(2π2)

)][
E

(
fy + (2d)−1√

c/(2π2)

)
− E

(
fy − (2d)−1√

c/(2π2)

)]
. (16)

The two preceding influence functions are attempts to approximate the empircally determined response of an
actuator push on a continuous DM.

Cross-sections of the influence functions for the ideal case and the continuous DMs are shown in Fig. 5,
left panel. While the ideal sinc response extends out infinitely, the hG and hS approximations are limited in
practical extent to the third actuator away. The small differences in shape between hG and hS correspond to large
difference in frequency response. As shown in Fig. 5, right panel, the difference of gaussians model significantly
attenuates low spatial frequencies and introduces more high-spatial frequency content than the sinc-gaussian
model.
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Figure 5. Continuous face-sheet DMs. [Left]: Slices through the impulse response along one axis. [Right]: Slice through
magnitude of frequency response along one axis. The difference of gaussians model attenuates low-spatial frequency
content and passes more high-frequency content.

4.2. Discontinuous DMs

For the discontinuous DMs we examine three more influence functions. Two are variations of the square-segment
piston-only DM, in which a square segment the size of a subaperture moves up and down independent of
neighboring segments. This is equivalent to a zero-order hold. This configuration is analyzed for the segments
being centered over the phase points, and the segments begin centered in each sensing subaperture. When the
segment is centered over a phase point, its value is set to that phase value. When it is centered in a subaperture,
its value is the average of the four surrounding phase point values. The piston-only response, centered over the
phase point, is

hP1(x, y) =
{

1 |x| < d/2, |y| < d/2
0 else , (17)

HP1(fx, fy) =
sinπfxd

πfx

sinπfyd

πfy
. (18)

When the segment is shifted to the center of the subaperture and the value is the average of the four phase
points, the response changes to:

hP2(x, y) = 0.25
[
hP1

(
x− d

2
, y − d

2

)
+ hP1

(
x−

2
, y +

d

2

)
+ hP1

(
x +

d

2
, y − d

2

)
+ hP1

(
x +

d

2
, y +

d

2

)]
(19)

HP2(fx, fy) = 0.5 [cos(πdfx) + cos(πdfy)]HP1(fx, fy) (20)

Note that his piston-centered model, due to the averaging of the phase points, has a response modulated every
1/d in frequency.

The final segmented configuration is square tip-tilt-piston segments centered in each subaperture. In this case
the segment is set to the least-squares fit of a plane to the four phase point values at the segment corners. The
response and transfer function for the least-squares fit is given by a rather complex set of equations. The equation
for a least-squares plane between four phase points at (0, 0, l), (d, 0,m), (0, d, p) and (d, d, q) is z = Ax + By + C
for 0 ≤ x ≤ d and 0 ≤ y ≤ d. The coefficients are linear combinations of the four actuators values such that
A = 0.5(−l + m − p + q), B = 0.5(−l − m + p + q) and C = 0.25(3l + m + p − q). The response can then be
pieced together based on shifted linear combinations of three responses

ha(x, y) =
{

x/d 0 ≤ x ≤ d, 0 ≤ y ≤ d
0 else , (21)



hb(x, y) =
{

y/d 0 ≤ x ≤ d, 0 ≤ y ≤ d
0 else , (22)

hc(x, y) =
{

1 0 ≤ x ≤ d, 0 ≤ y ≤ d
0 else , (23)

such that

hT (fx, fy) = 0.5 [−ha(x, y) + ha(x + d, y)− ha(x, y + d) + ha(x + d, y + d)] + (24)
0.5 [−hb(x, y)− hb(x + d, y) + hb(x, y + d) + hb(x + d, y + d)] + (25)
0.25 [3hc(x, y) + hc(x + d, y) + hc(x, y + d)− hc(x + d, y + d)] (26)

The total transfer function is then

HT (fx, fy) = 0.5 (−1 + Exp [−j2πdfx]) (1 + Exp [−j2πdfy])Ha(fx, fy) + (27)
0.5 (1 + Exp [−j2πdfx]) (−1 + Exp [−j2πdfy])Hb(fx, fy) + (28)
0.25 (3 + Exp [−j2πdfx] + Exp [−j2πdfy]− Exp [−j2πd(fx + fy)])Hc(fx, fy), (29)

where the Fourier transforms of these functions are

Ha(fx, fy) =
Exp [−jπd(fx + fy)]

j2πdfx

sinπdfy

πfy

(
sinπdfx

πfx
− d× Exp [−jπdfx]

)
, (30)

Hb(fx, fy) =
Exp [−jπd(fx + fy)]

j2πdfy

sinπdfx

πfx

(
sinπdfy

πfy
− d× Exp [−jπdfy]

)
, (31)

Hc(fx, fy) = Exp [−jπd(fx + fy)]
sinπdfx

πfx

sinπdfy

πfy
. (32)

This best-fit plane segmented model has the same transfer function as that of linear interpolation, along the
fx = 0 and fy = 0 axes. When fx = 0, H(fx, fy) reduces to

H(0, fy) =
sin2 πfyd

π2f2
y

. (33)

Slices along an axis for the discontinuous DMs and the frequency responses are shown in Fig. 6. The piston-only
segment model allows large amounts of high-frequency error through, which will add aliasing error to phase. The
tip-tilt-piston model is much better.

4.3. DM performance in closed loop

These various DM configurations were tested in our end-to-end ExAO simulation code, as detailed above. The
reconstructor has no knowledge of the DM and the DM model is variable.

The DM responses differ in two ways. First, some have a response closer to one in the pass-band than others.
These DMs should provide better correction in closed-loop. Second, some DMs let through much more high-
spatial-frequency content. These will introduce extra error into the system due to aliasing and should perform
much worse than other DMs. The SFWFS should improve the performance of these DMs (particularly the
segmented ones.)

The same two aberrations were chosen: 20 cm r0 atmospheric turbulence and the phase errors due to a
segmented primary mirror. Even in the noise-free case, the piston-only segmented DMs were unstable in closed
loop. A substantial portion of this problem is due to aliasing. As shown in Fig. 6, both let through large
amounts of high-spatial frequency power. A secondary problem is the fact that the Shack-Hartmann sensors are
insensitive to pistons. So in the hP2, the sensor will measure the slope of the wave-front, but not link things
up correctly in the phase reconstruction. In the hP1 setup, each subaperture sees a quadrant of each of four
adjacent segments. If the pistons between these become significant, the spot can degenerate.
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Figure 6. Segmented DMs. [Left]: Slices through the impulse response along one axis. [Right]: Slice through magnitude
of frequency response along one axis. The piston-only segmented models pass large amounts of high-frequency power.
The piston-tip-tilt fit is much better, with only a slight attenuation increase in the passband.
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Figure 7. Radial average of residual phase PSDs for various DM models, with use of the SFWFS. [Left panel]: Segmented
primary mirror errors. [Right panel]: 20 cm r0 atmospheric turbulence. In both cases, the ideal sinc interpolator is best,
followed by the sinc-gaussian DM, the tip-tilt-piston segmented DM and worst of all the piston-only segmented DM.

Between the continuous DMs, the sinc-gaussian influence function performed better than the difference of
gaussians. The difference between the residual PSDs and PSFs for these two are relatively small. Because
neither of these influence-function models are truly accurate representations of continuous DM response, further
study is indicated. Of the segmented DMs, the piston-tip-tilt model performed significantly better. Both with
and without the SFWFS, it performed at close to the level of the sinc-gaussian DM. The PSDs of the residual
phases (with use of the SFWFS) for the various DM models are shown in Fig. 7. In both cases the ideal DM
performed the best. The sinc-gaussian shows increased power close to the cutoff of 1/2d. The piston-tip-tilt DM
performs slightly worse, which is in agreement with the heuristic that a DM with a low gain in the pass-band will
correct those spatial frequencies less-well in closed loop. The piston DM performs much worse in both cases. The
high-spatial-frequency power that it adds in is clearly visible in both plots where the residual has more power
than the input phase aberration past 1/2d. The SFWFS is a non-ideal low-pass filter on the phase. This means
that aliasing will not be fully suppressed, especially given this increase in power. This leads to the extra error
below 1/2d as compared to the other DMs. For all the segmented cases, the influence-function model is more
appropriate than in the continuous case. This analysis, however, has neglected diffractive effects off segment
edges and gaps, which must be considered in any detailed design plan.



In the controlled scenario of a noise-free ExAO simulation run on a static aberration, differences in DM
performance are clearly visible. In these cases the piston-only segmented DMs were not stable in closed loop.
Use of the SFWFS made them stable, but phase residual power is much degraded from the other DM models.
The piston-tip-tilt segmented DM performed nearly as well as the best continuous DM model. More thorough
study and characterization of actual devices is called for, but this result demonstrates the potential feasibility of
using a segmented DM (in particular a high-order MEMS device) for ExAO phase correction.

5. CONCLUSIONS

We have done analysis on the technical feasibility of three key portions of ExAO wave-front control. Provided
adequate characterization is done, a fast, high-order ExAO system can successfully run following a slower, low-
order AO system. Spatial filtering of the wave-front phase with the SFWFS allows increased PSF sensitivity.
Simple piston-only segmented DMs were shown to not be stable due to extra high-spatial frequency error, which
the SFWFS can ameliorate. A piston-tip-tilt segmented DM model performed nearly as well in closed-loop
operation as the standard continuous DM models on reasonable aberration profiles. These results are important
steps in validating ExAO technical concepts, but must be followed up with more rigorous ExAO system design
and implementation.
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